Mobil 1™ – proven performance for hybrid vehicles
The hybrid vehicle is a bit more familiar to the average consumer these days. With the first production hybrid getting its U.S. introduction in 1999, there's now a general public understanding that hybrids are a "green" technology. But there's less public awareness about how these modern engines operate, the types of alternative powertrains available and the central role engine oil plays.
Advanced lubricant technology for all hybrids
ExxonMobil engineers regularly perform extensive testing in support of hybrids. A gruelling, non-stop 50,000-mile hybrid test simulating city and highway driving showed that Mobil 1™ 0W-20 and Mobil 1™ 5W-30 demonstrated excellent performance regardless of hybrid type, and inspection of the hybrid engines revealed that Mobil 1 engine oil provided excellent protection against deposit, sludge and wear.
Every hybrid powertrain configuration that ExxonMobil engineers test - series, parallel and series-parallel – can benefit from the overall lubrication and wear protection of Mobil 1 lubricant technology. Mobil 1™ advanced full synthetic engine oil provides exceptional performance and protection for all hybrids.
Efficient function and design: How hybrids work
Hybrid vehicles are defined by their ability to use more than one energy source for propulsion; electricity is most commonly the additional energy source in hybrids. By using electricity, the hybrid design relies less on traditional fossil fuels, increases miles per gallon and reduces emissions. Modern hybrid vehicles employ three fundamental elements: an internal combustion engine, an electric motor and a battery pack.
Hybrid technology takes advantage of everyday driving situations to increase efficiency. At lower driving speeds, hybrids can operate exclusively on their battery pack and electric motor. Regenerative braking functions to recharge a hybrid vehicle's battery by capturing the momentum energy that occurs while coasting to a stop. Also, start-stop systems shut down the engine at full stops, which helps cut down on the energy required for idling.
Not the same: Three hybrid powertrains
Powertrains serve to distribute power to the wheels of the car. Conventional powertrains include the engine, transmission, drive shaft, suspension and wheels. Hybrid vehicles not only have extra powertrain components, but engineers have also maximized the benefits of hybrid design by employing different powertrain configurations - series, parallel and series-parallel.
Series – The electric motor generates power to the wheels, receiving electric power from a battery pack or a generator run by an internal combustion engine.
Parallel – The electric motor and internal combustion engine work together to generate power to the wheels.
Series-parallel – The electric motor or internal combustion engine can independently generate power to the wheels.
Electric-only and gas-only power allows the series-parallel design to provide the most fuel-efficient operation of these three powertrain configurations. Series-parallel can act as a series powertrain at lower speeds, but then turn to gas-only power at higher speeds. The series-parallel's versatile design uses less fuel and provides optimum efficiency.