

What we'll discuss today

- Why the evolving market demands a preventative maintenance approach
- Key elements of a best-in-class preventative maintenance strategy
 - Regular servicing
 - o Lubrication
 - Used oil analysis

Reminder: O&M is fundamental to a successful operation

Turbines are getting larger and moving to more remote locations, and you need to continue to optimize levelized cost of energy (LCOE).

The post-PTC environment will increase pressure on O&M

2019 estimated LCOE*:

- \$34.5/MWh
- Includes \$13.7/MWh cost due to fixed O&M

2022 estimated LCOE*:

- \$44.3/MWh
- Includes \$13.1/MWh cost due to fixed O&M

LCOE is expected to increase by ~30% from 2019 to 2022, while O&M costs will remain about the same.

30%

The post-PTC environment will increase pressure on O&M

We're also entering a new, post-warranty era for many wind farm operations – increasing O&M team responsibility even further.

Average age of North American wind fleets:

5.5 years in 2015

years in 2020

14 years in 2030

The post-PTC environment will increase pressure on O&M

We're also entering a new, post-warranty era for many wind farm operations – increasing O&M team responsibility even further.

The majority of wind turbines installed worldwide are out of warranty*

~370 GW

In this evolving market, downtime is even more damaging

Particularly with LCOE projected to increase in the coming years, any downtime – planned or unplanned – can severely impact your bottom line.

A single gearbox failure can result in:

52%

loss in annual energy production

55%

increase in unscheduled turbine downtime

What does this all mean?

To maximize maintenance dollars, operators need a preventative maintenance strategy.

Benefits of a robust preventative maintenance approach

Meet production commitments.

Minimize downtime.

Optimize safety.

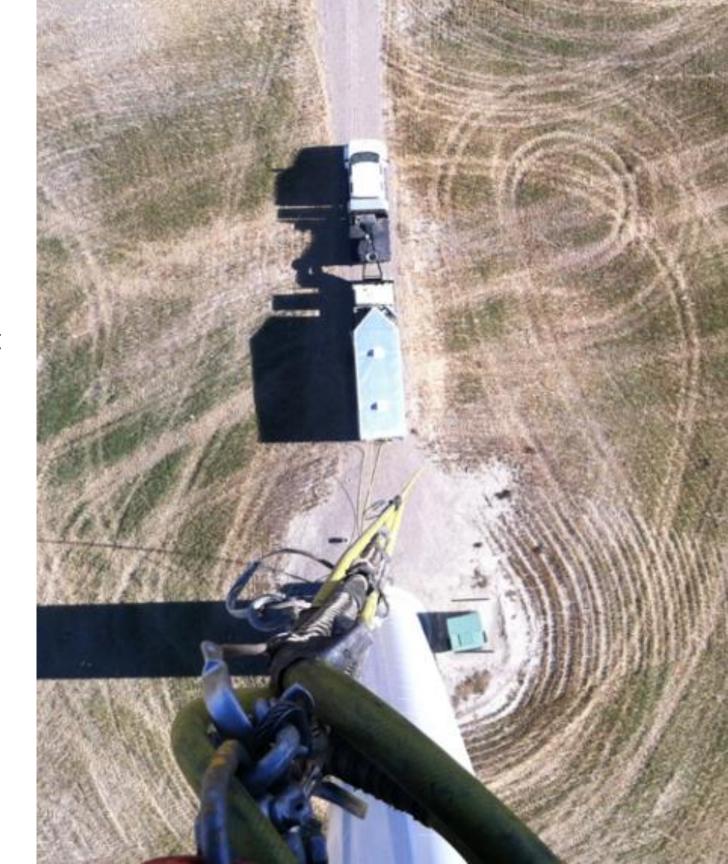
Key elements

Smart oil change approach

Advanced lubricants

Routine monitoring

Planned and thorough oil changes: an essential part of preventative maintenance



When you conduct your oil change matters

- Schedule your oil change in advance
- Schedule for warm weather 35 degrees Fahrenheit and up
 - Less downtime
 - Cleaner oil changes
- Take advantage of low production months
 - Low wind not no wind
 - Flush cycles require a spin time

What to look for in a service provider

Good track record

- Expertise demonstrated with thorough reports
- Demonstrated delivery on time and budget

Expertise to help you plan better and minimize costs

- Efficient and experienced crew to minimize work time
- Collaborative with planning suggests criteria for timing
- Low rate of repeat oil changes doing it right the first time

Is flexible to your needs

- Commits to delivery on your schedule
- Ensures they're not overbooked

Lubrication as a first line of defense

Turbines are exposed to some of the harshest conditions in heavy industry:

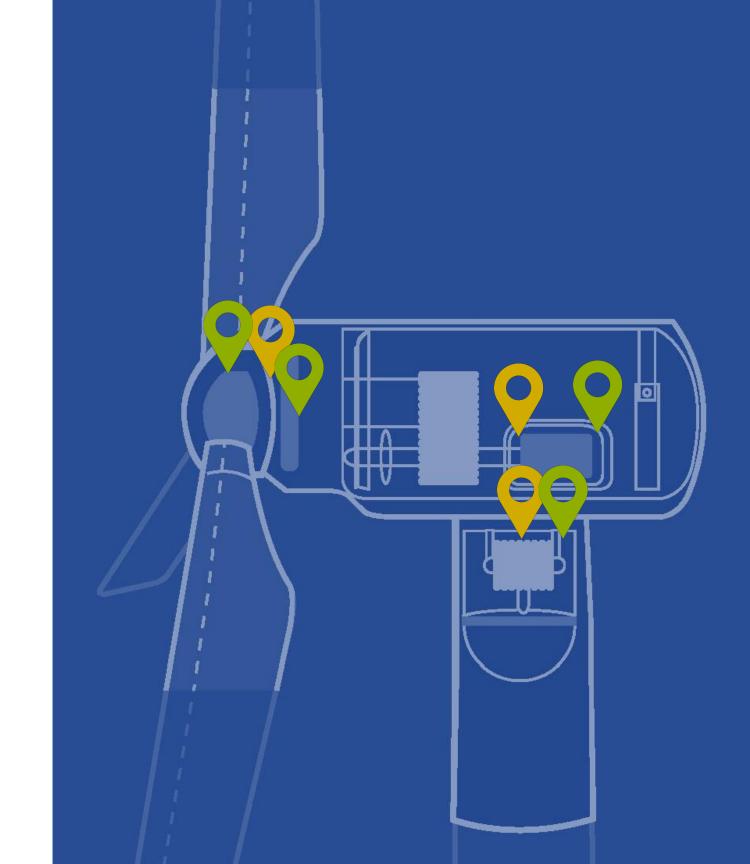
- Extreme temperatures
- Heavy and varying loads
- Strong winds
- Exposure to water contamination

In these conditions, lubricants are the first line of defense.

Lubricants protect a range of critical components

Gear oil:

- Gearbox
- Pitch gear
- Open gear
- Yaw gear



Grease:

- Gearbox
- Pitch gear
- Open gear
- Yaw gear

Not all synthetic lubricants are the same.

Your choice in lubricant matters

- Even for synthetic lubricants, formulation varies significantly.
- Use lubricants formulated with the right mix of advanced base oils and additives.
- They can deliver long-lasting performance and business results.

Making the right choice can make a significant difference

Switching to an advanced gear oil can help potentially double oil drain intervals.

- Typical wind turbine gear oils have an oil drain interval of 36 months.
- Advanced synthetic lubricants are proven to extend intervals up to 7+ years.
- You could hypothetically eliminate one oil change over 20 years, reducing costs.
- Mitigation methods like top treating won't deliver the same long-term performance.

What should you look for in a wind turbine gear oil?

Advanced synthetic gearbox oil designed for long life.

- Ability to perform in extreme temperatures (150 degrees Celsius or more)
- Enhanced oxidation and water resistance
- Superb protection against wear and micropitting
- Foam control and trouble-free wet filterability
- Metal-free formulation that does not contribute to WEC

What should you look for in a wind turbine grease?

Advanced synthetic grease designed for performance in harsh conditions.

- Excellent performance in severe lowtemperature conditions (to ensure sufficient flow and facilitate start-up)
- Robust water tolerance
- Enhanced equipment protection from wear, rust and corrosion
- Long lubrication intervals

Used oil analysis: a critical tool to deliver realtime performance insights

Why used oil analysis can help

- It is the bedrock of any preventative maintenance program.
- The only way to identify turbine reliability issues such as lubricant degradation and component wear prior to critical failure.
- Routine oil analysis is relatively easy to implement with a valuable payoff in the long-term.

Getting the right oil analysis insights

Equipment condition

Provides insight into metal wear and component metallurgy

Lubricant condition

Indicates lubricant quality and pinpoints abnormal conditions

Contamination

Assesses presence of contaminants

Questions?

Thank you

Gary Hennigan: gary.g.hennigan@exxonmobil.com

Cody Page: cpage@hnelectric.com

Performance by ExconMobil